Kendini dengeleyen robotumuz iki tekerlek üzerinde otonom olarak dengede durmak için sensör tabanlı çalışan bir robottur çok katlı ve dengede durması biraz daha zor olduğundan kodlamada gelişmiş PID algoritma kullanıldı.Kontrol kartı olarak Arduino UNO , motor sürücü için L298N modeli tercih edildi.Bu model sinyallere gayet iyi tepki veriyor.Ayırıca piyasada bulunur ve ucuz.İvme ölçer için MPU6050 kullanıldı.Kendinden 3 eksen GYRO da var.
Malzemeler
- Arduino UNO
- MPU6050 İvmeölçer Gyro
- L298N Motor sürücü kartı
- 2 Adet Dagu motor + tekerlek seti
- Batarya
- Robot Şasesi
//Proje Hocam - Kendini Dengeleyen Robot
//www.projehocam.com
#include <PID_v1.h>
#include <LMotorController.h>
#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif
#define LOG_INPUT 0
#define MANUAL_TUNING 0
#define LOG_PID_CONSTANTS 0
#define MOVE_BACK_FORTH 0
#define MIN_ABS_SPEED 30 // Minumum Başlangıç Hızı
//MPU
MPU6050 mpu;
// MPU control/status vars
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer
// orientation/motion vars
Quaternion q; // [w, x, y, z] quaternion container
VectorFloat gravity; // [x, y, z] gravity vector
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector
//PID
#if MANUAL_TUNING
double kp , ki, kd;
double prevKp, prevKi, prevKd;
#endif
double originalSetpoint = 174.29;
double setpoint = originalSetpoint;
double movingAngleOffset = 0.3;
double input, output;
int moveState=0; //0 = denge ; 1 = geri ; 2 = ileri
#if MANUAL_TUNING
PID pid(&input, &output, &setpoint, 0, 0, 0, DIRECT);
#else
PID pid(&input, &output, &setpoint, 70, 240, 1.9, DIRECT);
#endif
//MOTOR SURUCU
int ENA = 3;
int IN1 = 4;
int IN2 = 8;
int IN3 = 5;
int IN4 = 7;
int ENB = 6;
LMotorController motorController(ENA, IN1, IN2, ENB, IN3, IN4, 0.6, 1);
//Zamanlama
long time1Hz = 0;
long time5Hz = 0;
volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
void dmpDataReady()
{
mpuInterrupt = true;
}
void setup()
{
// join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif
// initialize serial communication
// (115200 chosen because it is required for Teapot Demo output, but it's
// really up to you depending on your project)
Serial.begin(115200);
while (!Serial); // wait for Leonardo enumeration, others continue immediately
// initialize device
Serial.println(F("I2C Kuruluyor..."));
mpu.initialize();
// verify connection
Serial.println(F("Suruculer test ediliyor..."));
Serial.println(mpu.testConnection() ? F("MPU6050 baglanti basarili") : F("MPU6050 baglanti basarisiz"));
// load and configure the DMP
Serial.println(F("DMP kuruluyor..."));
devStatus = mpu.dmpInitialize();
// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyroOffset(220);
mpu.setYGyroOffset(76);
mpu.setZGyroOffset(-85);
mpu.setZAccelOffset(1788); // 1688 factory default for my test chip
// make sure it worked (returns 0 if so)
if (devStatus == 0)
{
// turn on the DMP, now that it's ready
Serial.println(F("Enabling DMP..."));
mpu.setDMPEnabled(true);
// enable Arduino interrupt detection
Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
attachInterrupt(0, dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();
// set our DMP Ready flag so the main loop() function knows it's okay to use it
Serial.println(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
//setup PID
pid.SetMode(AUTOMATIC);
pid.SetSampleTime(10);
pid.SetOutputLimits(-255, 255);
}
else
{
// ERROR!
// 1 = initial memory load failed
// 2 = DMP configuration updates failed
// (if it's going to break, usually the code will be 1)
Serial.print(F("DMP Initialization failed (code "));
Serial.print(devStatus);
Serial.println(F(")"));
}
}
void loop()
{
// if programming failed, don't try to do anything
if (!dmpReady) return;
// wait for MPU interrupt or extra packet(s) available
while (!mpuInterrupt && fifoCount < packetSize) { //no mpu data - performing PID calculations and output to motors pid.Compute(); motorController.move(output, MIN_ABS_SPEED); unsigned long currentMillis = millis(); if (currentMillis - time1Hz >= 1000)
{
loopAt1Hz();
time1Hz = currentMillis;
}
if (currentMillis - time5Hz >= 5000)
{
loopAt5Hz();
time5Hz = currentMillis;
}
}
// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();
// get current FIFO count
fifoCount = mpu.getFIFOCount();
// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024)
{
// reset so we can continue cleanly
mpu.resetFIFO();
Serial.println(F("FIFO overflow!"));
// otherwise, check for DMP data ready interrupt (this should happen frequently)
}
else if (mpuIntStatus & 0x02)
{
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
#if LOG_INPUT
Serial.print("ypr\t");
Serial.print(ypr[0] * 180/M_PI);
Serial.print("\t");
Serial.print(ypr[1] * 180/M_PI);
Serial.print("\t");
Serial.println(ypr[2] * 180/M_PI);
#endif
input = ypr[1] * 180/M_PI + 180;
}
}
void loopAt1Hz()
{
#if MANUAL_TUNING
setPIDTuningValues();
#endif
}
void loopAt5Hz()
{
#if MOVE_BACK_FORTH
moveBackForth();
#endif
}
//move back and forth
void moveBackForth()
{
moveState++;
if (moveState > 2) moveState = 0;
if (moveState == 0)
setpoint = originalSetpoint;
else if (moveState == 1)
setpoint = originalSetpoint - movingAngleOffset;
else
setpoint = originalSetpoint + movingAngleOffset;
}
//PID Tuning (3 potentiometers)
#if MANUAL_TUNING
void setPIDTuningValues()
{
readPIDTuningValues();
if (kp != prevKp || ki != prevKi || kd != prevKd)
{
#if LOG_PID_CONSTANTS
Serial.print(kp);Serial.print(", ");Serial.print(ki);Serial.print(", ");Serial.println(kd);
#endif
pid.SetTunings(kp, ki, kd);
prevKp = kp; prevKi = ki; prevKd = kd;
}
}
void readPIDTuningValues()
{
int potKp = analogRead(A0);
int potKi = analogRead(A1);
int potKd = analogRead(A2);
kp = map(potKp, 0, 1023, 0, 25000) / 100.0; //0 - 250
ki = map(potKi, 0, 1023, 0, 100000) / 100.0; //0 - 1000
kd = map(potKd, 0, 1023, 0, 500) / 100.0; //0 - 5
}
#endif
hande –
Güzel proje olmuş kurulumu geliyor proje
Furkan (doğrulanmış kullanıcı) –
Projenin demonte gelecegi belirtilse daha iyi olurmus. Parcalar eksiksiz sekilde geldi. Robot sasesi 3d printerdan basilmis, hafif kullanisli.
Yağız Sarmanlı (doğrulanmış kullanıcı) –
Malzemeler gayet kaliteli, ürün demonte olarak satılıyor.
ERKAN AKBIYIK –
gayet güzel bir çalışma olmuş ellerinize sağlık kütüphaneleri düzgün yükleyemiyorum kütüphane dosyalarını atarsanız sevinirim.